An extended ode solver for sensitivity calculations

نویسندگان

  • P. Valkó
  • Sandor Vajda
چکیده

A rcccntly published semi-implicit Rung+Kulta algorithm has been extended to compute parameter sensitivities in dynamical systems. The decomposed direct method (DDM) of sensitivity analysis results in a general and compact FORTRAN program, well-suited even for small computers. The straightforward DDM provides more accurate sensitivities than does the numerically efficient, but more involved Green’s function (GF) approach. Results show that for kinetics problems 01” moderate complexity the proposed procedure is competitive with the well known GF method in terms of computer-time requirements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of the Variable-step Variable-order 3-stage Hermite–birkhoff Ode/dde Solver of Order 5 to 15

The ordinary and delay differential equations (ODEs/DDEs) solver HB515DDE is based on the discrete hybrid variable-step variable-order 3-stage Hermite–Birkhoff ODE solver of (consistency) order 5 to 15. The current version of the solver can handle ODEs and DDEs with statedependent, non-vanishing, small, vanishing and asymptotically vanishing delays. Delayed values are computed using Hermite int...

متن کامل

Exploiting the Multilevel Parallelism and the Problem Structure in the Numerical Solution of Stiff ODEs

A component-based methodology to derive parallel stiff Ordinary Differential Equation (ODE) solvers for multicomputers is presented. The methodology allows the exploitation of the multilevel parallelism of this kind of numerical algorithms and the particular structure of ODE systems by using parallel linear algebra modules. The approach furthers the reusability of the design specifications and ...

متن کامل

Aerodynamic Design Optimization Using Genetic Algorithm (RESEARCH NOTE)

An efficient formulation for the robust shape optimization of aerodynamic objects is introduced in this paper. The formulation has three essential features. First, an Euler solver based on a second-order Godunov scheme is used for the flow calculations. Second, a genetic algorithm with binary number encoding is implemented for the optimization procedure. The third ingredient of the procedure is...

متن کامل

Error Control Matters

Sometimes an ordinary differential equation (ODE) solver gives the results it should, even if they are unexpected or undesirable. To obtain correct, expected numerical results, both relative and absolute error control tolerances must be chosen judiciously. Here we attempt to clear up some possible misunderstandings regarding the performance of a popular ODE solver and error control.

متن کامل

[inria-00450410, v1] New classification techniques for ordinary differential equations

The goal of the present paper is to propose an enhanced ordinary differential equations solver by exploitation of the powerful equivalence method of Élie Cartan. This solver returns a target equation equivalent to the equation to be solved and the transformation realizing the equivalence. The target ODE is a member of a dictionary of ODE, that are regarded as well-known, or at least well-studie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Chemistry

دوره 8  شماره 

صفحات  -

تاریخ انتشار 1984